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II.  Thermal Conductivity 

by 

Johannes Zittartz+ 

Department of Physics, University of California, San Diego 

La Jolla, California 

ABSTRACT 

- The thermal conductivity of the excitonic insulator is calculated in the 

semimetallic limit. At low temperatures the main scattering mechanism is as- 

sumed to be due to impurities. Despite a recent   'm of "superthermal conduc- 

tivity" of the system which can be described as a ondensate of electron-hole 

pairs we find that the thermal conductivity is "we.il behaved." It is shown that 

the thermal conductivity in the semimetallic limit of the underlying two band 

model is almost identical to the thermal conductivity of a superconductor con- 

taining magnetic impurities as scatterers. The analogy stems from the fact 

that the thermodynamic properties in both cases are similar as was discussed 

recently. 
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I. Introduction 

In this paper we continue the analysis of transport properties of the 

1 2 
"excitonic Insulator" which has been discussed recently in the literature ' . 

In tbe preceding paper3, hereafter referred to as II, we have calculated the 

electrical conductivity of the excitonic phase in the semimetallic region where 

the valence band and the conduction oand of the underlying model overlap. The 

main scattering mechanism at low temperatures is assumed to be due to impurities. 

In I we have discussed the influence of the impurities on the thermodynamlc 

description of the excitonic phase. It was shown that the situation could be 

described completely within the framework of the Abrikosov-Gorkov theory origi- 

nally developed for superconductors containing magnetic impurities . 

In this paper we investigate the thermal conductivity of the excitonic 

phase which can be described as a condensate of bound pairs of electrons and 

holes. Ihe main reason for this investigation is that Kozlov and Maksimov have 

recently claimed "superthermal conductivity" for such a system . Such a novel 

situation certainly would be of major experimental interest. However, we shall 

show in the course of this work that the thermal conductivity or the excitcnic 

phase is "well behaved," in fact it is similar to the thermal conductivity of 

a superconductor containing paramagnetic impurities as scatterers . The contra- 

dictory claim of reference 5 is based on the Landau criterion for superfluidity; 

the derivation of the criterion for the excitonic phase contains a serious 

7 
mathematical error . 

To start with we shall first discuss Kubo's formulas for the transport 

coefficients. Measuring energies relative to the chemical potential the elec- 

8 
trie current i and the heat current U are defined as follows 

-2- 



j «--^.ÄjTj.ijrT 

a) 

where u, is the chemical potential, T the temperature and e the electronic 

charge; 6" is the d.c. conductivity, The thermal conductivity at is obtained 

from (l) by 

\K -U VT i J • (2) 

which leads to 

e »•7(l-t-)   • (3) 

The  d.c. conductivity G  has been calculated in the preceding paper whereas the 
Q 

transport coefficients j^ and Lt are given by    (we anticipate spherical sym- 

metry) 

L *T J"dtXdA<U(o)U(tV,A)\ 

^. a 3* Tit JotA <3(0)^f(t*iA»     . 
© 0 «MM» 

00 

Here U and A   are the Heisenberg operators for the energy and electric currents, 

respectively. The brackets indicate a thermal as well as an average over im- 

purities as discussed in I and II. 

The two band model we shall use has been discussed in detail in I and 

the preceding paper (II). The  single particle energies in the two bands are 

assumed to be given near the Fermi surface by (see eq. (II,2) 

a*.        "**     A» in     * 
(5) 
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where for mathematical convenience ve assume equal band masses. Ve shall see 

later on that In the semimetallic limit (large pQ) the thermoelectric coef- 

ficient Lt  is smaller by a factor  * /.ft-   as compared to L  . As we 

shall systematically neglect such terms, ve confine our attention to the cal- 

culation of the coefficient L . 

Another useful representation of L   can be derived from the Kubo form- 

ula (4) . Consider the causal correlation function 

I *M>) * f <T uw \M%jy (6) 

where TJ, are imaginary times with 0 4 Tf« i ß  • Fourier transforming ac- 

cording tc 

?(V*t) '^I^je^ ;y«*,irp" (7) 

we continue the discrete imaginary frequencies IV- to the full complex energy 

plane« The coefficient is then given by 

L4^ii[?(«tif)-Tr-itfj *£M xa«,iw. J)    (8) 
* co-»o '   to-^o 

where 0 is a positive infinitesimal. 

However, we have to be careful in using this formula for answering the 

question of "superthermal conductivity." This is because the mixing of "retarded" 

and "advanced" response in formula (8) neglects the possibility of an anomalous 

behavior of the real part of ?(fe«*0+if)  in the limit w-*0 . Similar 

to the problem of infinite conductivity in superconductors, we expect that the 

possibility of an undamped heat current which could be accelerated by the tem- 

perature gradient would show up in the real part of the retarded correlation 

function ?(u>-no") (thus leading to: ~ U *• Const.  -ss—   ). Instead of 
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formula (8) we shall consider the following expression 

Tft*ii)-C 
^ s li»   ;  (9) 

where the constant C will be determined later on by comparison with the cor- 

responding expression for the normal state behavior. Formula (9) bears resem- 

blance to the familiar expression for the electrical conductivity (see preced- 

ing paper). T(<4*idy would correspond to the paramagnetic contribution to the 

electric current (denoted by K (^tiJ) in II) whereas the constant C would 

be equivalent to the diamagnetic contribution (denoted by -K In II) . 

In section II we derive a tractable form for r(iy/ not dwelling on 

additive constants which are assumed to be absorbed in the constant C. In 

section III we make an ansatz for the constant C based on the required 

form in the normal state. We also shall be &uidfird by the corresponding expres- 

sion for the diamagnetic contribution in the problem of electrical conductivity, 

ütoe resulting expression for the thermal conductivity will turn out to be "well 

behaved" as co-*0 . Thus there is no "superthermal conductivity." In section 

IV we calculate the final expression in analogy to calculations in the preceding 

paper. Section V contains explicit evaluations in several limits. 
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II» Dtrivation of the heat current correlation function 

B» model has been discussed in detail in papers I <*nd II (see section 

II of preceding paper).    Denoting creation and annihilation operators for al- 

and b- electrons by  <*#|Äp   and   bp,bp    respectively we have introduced a 

Itembu   notation 

Y(jJ m( ~)    )  ?V "(*>*aj)     , (10) 
«ft 

The electric current operator has been written as (eq. 11.19) 

MM. f       ft»     *"* **     M» 
WWW 

A 
where the velocity matrix 'tf'(p) is explicitly 

(12) 

11 
Similarly the spatially uniform heat current operator can be defined by 

Urc> -i(fe-^)?^F^^W«l (13) 

where TfV are imaginary times and ft   a positive infinitesimal indicating 

the ordering of operators. Expression (13) is the appropriate form when deal- 

ing with imaginary times in which case the Heisenberg field operators are given 

by equation (II.8) of the preceding paper. Introducing (13) into the correla- 

tion function (6) we obtain 



• Z<T ytrf) *(f) yfXl) Y^'t;) ty) Y(^T»)> I     W 

*»'- var 

Actually the time derivatives in this expression should have been included in 

the brackets, as they do not commute with the time orderin** operator T. By 

taking these derivatives outside ve have neglected a term proportional to the 

0 - function dC^-Tj,) • When Fourier transformed this correction term 

gives a constant which we assume to have been included in the constant C in 

equation (9)« 

The further calculation proceeds in a way similar to the calculation 

of the electrical current correlation function in the preceding paper. In- 

troducing Greins functions (see I and II) and neglecting vertex corrections 

for a moment we get 

P <vy - -i (*t; - 9*)(*q - «J 
(15) 
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Fourier transforming we obtain 

TPi) - - £ ^i i 21 Trace T<f) 6^ »<**) <*(f) G(pt«*-\>) e ^  ,(16) 
*       *0 P    fid. •*— ■* "*** Ml. / 

where the tine derivatives have been written as derivatives with respect to r , 

Comparing this expression with the electrical current correlation function 

K (iv)   (11,21) we see that both are identical except for the prefactor, 

the X -exponential and ft -derivatives and except that we have left out the 

vertex correction for the velocity matrix in (16). Ttoe vertex corrected ex- 

pression r(ip)may be written down immediately from this comparison with (II.21): 

where W has been calculated in section III of the preceding paper. We remark 

that as usual the <ä -summation has to be performed first as the double sum- 

mation converges only conditionally. Expression (17) is our final form of the 

heat current correlation function. The constant C which according to equa- 

tion (9) has to be subtracted from (17) will be considered in the following 

section. 

III. Determination of the subtraction constant 

We shall determine the subtraction constant C in formula (9) by anal- 

ogy from the corresponding constant in the electrical conductivity problem, 

i.e. the diamagnetic contribution. The latter is given from equation (11.18) 

of the preceding paper 

*■   r 
(18) 

where the £wK*re the general band energies,  fta|(p) the occupation numbers in 
■ i ^ 
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momentum space. We rewrite the occupation numbers in terms of the spectral 

functions 

(X9) 

where «p(to) is the Fermi distribution function and the spectral functions are 

expressed through the one-particle Greens functions 

V£»w) * ' [Vji-*^ "Vf'^J (20) 

Thus we can write for (18) 

übe product f (to)S(&cö) can be interpreted as the density of particles with mo- 
Ml 

mentum p and energy <tf . 

It is intuitively clear that in the thermal conductivity problem we 

should replace the charge 0 in expression (21) by the energy (A . Therefore 

we make the following ansatz for the constant C: 

c Ä t ? (S w) X S »VN S*M ♦ (* -> «o P    *»   **  »JO AM to» 

»- (22) 

where in the second line we have explicitly introduced the functions f and S  . 

a. 
The (tt -factor is generated by the ^-derivatives ^ and g  is a small positive 

number which has to be set equal to zero finally as indicated in (22). 

The «o-integral can be transformed into a summation over imaginary fre- 

quencies HA . This is done by closing the contour of the integral for the 

first Integrand in (22) by a large semicircle in the upper half plane and for 
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the second Integrand in the lover half plane. Summing over the residues at the 

poles of the Fermi function at fc»!^ » I(2H*|)1T|B"  we get at once*. 

where the u)-summation has to be performed first as usually. In order to make 

contact with the correlation function expression (17) > the right hand side in 

(23) is further transformed by a partial j> - integration over the Brillouin 

zone. In analogy to the calculation in the preceding paper (eq. 11,22) we get 

where nT (pj are the group velocities *- £. Afpl     (12). Using the 

Greens functions of the preceding paper (11,9), we have after taking the deri- 

vatives and combining alj. terms in uialogy with expression (11,23): 

For better comparison with T(ip) (IT) we also have substituted x-+ Zfi 

Comparing this expression with expression (17) for the correlation 

function TdV) we see that 

C S ?(«»*0) } (26) 

because the vertex corrected velocity matrix W  in (17) reduces to the free 

vertex function Vet y = 0  (see equations (II.25,26,30) of the preceding 

paper). As the statement (26) is independent of the fact whether the system 

is in the normal state or the excitonic state, we can conclude quite generally 

that the thermal conductivity is "well behaved." Ulis is because (26) guarantees 

that the real part of the numerator in (9) vanishes in the limit U)-+0 « This 
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conclusion will be confirmed by the calculations in the next two sections. 

IV. Evaluation of the thermal conductivity 

Combining the two expressions (IT) and (25) we can follow very closely 

the calculations of the corresponding expressions (II.21,23) in the preceding 

paper. We first perform the momentum integral evaluating the total expression 

at the Fermi surface. In analogy to the result (11,33) of the preceding paper 

we get 

pc.v) * TM-c --£§. fZ.FK,<;») e. 
I*.. <2T' 

where p is the density of electrons or holes, respectively, and the function 

F has been defined in equation (11.3*0. ^» further calculation differs slightly 

from the corresponding calculation in section IV of the preceding paper because 

of the presence of the £ -exponential in (27). We write the frequency summation 

as a contour integral in the complex plane: 

}H R.x.1^ .«*** . -Jj f* £* F(M^ (28) 

the path C  being defined in equation (11,35) of the preceding paper. Because 

of the j -exponential we have to choose the Fermi function in (28) instead of 

the tanh-function in (11,35) in order to insure the vanishing of the integrand 

for large z. The integral (28) is further transformed into an integral over the 

discontinuities of the function F(l,2-'ty) across its cuts. These cuts are 

defined in equation (11,37). The contribution from the first cut C, is given 

by 

31 * " 2I i dK ^TT LW**\l*-»)-F<*4t%*\9fl (29) 
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where uO  is the gap In the excitation spectrum of the system (II.A10). Simi- 
o 

larly the contribution from the cut CV gives 

where we have used (II. 38). The contributions from the two cuts Cp and C. 

can he transformed to integrals over the cut C, in the aame way. Combining 

all k terms and rearranging we obtain for the right hand side of (27) 

J (3D J 

tf«K> 

According to formula (9) we have to take the analytical continuation of 

this expression from i»iy to 2*u)+i£ and then pass to the limit tO-»0. Biis 

process leads to the following expression for the transport coefficient L i 

-Rx-i?;xnoti$£toM^ f | 
(32) 

I 

where we have left out the contributions from F(x-iffx-w-if) and F(X*<JJä*UD'MJ) 

which according to (II.U2) vanish in the limit tt>-*0 . Furthermore we can 

transform X°"*X+<0 in the first part of the integral and split the integration 

into two terms. Ehe first of these terms is the integral from CüL-to to <*>* 

and gives for small to 
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*0 

fsj Ft^S^e-tyfanh^ °°^H) -**l*fafi} ^ 0 
(33) 

as discussed in equations (II.44,45) of the preceding paper. Oüie second inte- 

gral (<Oe£x<«o) can be combined with the second part in (32) leading to 

L - £ *? S ** { «tff1 Rw^fl «fee«) ») 

where we have replaced 2y-*y , 

Comparing this expression with equations (11.46,47) of the preceding 

paper we see that the d.c. conductivity apart from the factor &  may be ob- 

tained from (34) by leaving out the y-derivatives. ttiis is explained by the 

fact that the heat current (13) differs from the electric current (11) by the 

time derivatives which eventually are -represented by the Y -derivatives in the 

correlation function expression (17)» In the same way it is clear that the 

thermoelectric coefficient L9 ( 4) is given by (34) with one g -derivative only, 

as there is only one heat current involved in the correlation function (4) for 

Therefore Lf   obviously vanishes. The  reason for this is that we have 

evaluated the momentum integral at the Fermi surface in passing from expression 

(17) to expression (27). Correction terms would be smaller by a factor *B'/ pQ 

which we have neglected systematically. Thus the thermoelectric coefficient 

Lt     is zero to a sufficient accuracy. 

The  thermal conductivity 7t  is therefore given from (3) and (34) 
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»-iff*,*«** -   -ta,  ,— 
where ve have introduced the.function 4r F(*ti5)*-ioj   from equation (II.k&) 

of the preceding paper; the different terms and symbols are also explained in 

section V and the Appendix of the preceding paper. Explicit calculations in 

several limits are considered in the final section. 

V. Discussion and explicit calculations 

We may compare our final expression (35) with the corresponding formula 

for the thermal conductivity of a superconductor containing magnetic impurities 

as derived in reference 6 (equation (3.1)} The two expressions are identical if 

we replace the total density of particles 0 in the formula of reference 6 by 

2. o   in our case which is due to the two types of carriers. The similarity 

is not surprising as we have seen in reference 2 (paper I) that the excitonic 

phase in the presence of impurities has the same thermodynamic properties as a 

superconductor with magnetic impurities. Therefore one expects that the reac- 

tion to a temperature gradient is similar in both systems because the different 

charges of the bound pairs are not significant in this case. 

Tttie fact that the expression (35) is well behaved over the whole tem- 

perature range clearly disproves the claim of reference 5 that the excitonic 

phase should have "superthermal" properties. It remains to discuss the behavior 

of the thermal conductivity in several limits which are accessible to explicit 

calculations. 

In the normal state (A=0) we obtain from (35) using (II.51) of the 

preceding paper 

*» - tH* K«T (36) 
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where Z      s P       is the transport collision time (II.50). Upon com- 

parison with the "normal" conductivity (11.52) we have the Wiedemann-Franz law 

"^   = T ^     • (37) 

Using (36) we write 

00 

In order to evaluate this expression asymptotically near T ■ 0 we have to dis- 

tinguish between the two cases whether the excitation spectrum of the system 

has a gap ((*)„-£ o)   or not. In the first case, i.e. for low impurity con- 

centration ( olsi~ < |   , see the preceding paper), we obtain, using the 
A 

expressions (II.5*0 and (II,55) of the preceding paper, respectively 

*      .1  J-«**   a    -P* 
P" = ^'STJh Pw°e      .T"/*^' • 

rtn 

Ihus the thermal conductivity goes to zero exponentially as long as there is a 

gap in the excitation spectrum. 

In the gapless region (o(>|^    we get at T ■ 0 using (II.58) of the pre- 

ceding paper and starting the integration in (38) at 000«0 

1       -*- 

—     = 2r. </        OC - •—> I     § (to) 

tr. 

Comparing with (II.59) we see that in the gapless region the ratio */-*  is 

identical to the ratio */~>    for the d.c. conductivity. Therefore the Wiede- 

mann-Franz law holds, too. 

-15- 



Finally, we consider the transition temperature region where the system 

Is always gapless /* » —- > / 4$ A -* 0} • Expanding (38) In powers of A 

we conclude In analogy to equations (11.62,65) of the preceding paper that 

f «I -co*«i.(l-t)  t-£*J . (fa.) 

Numerical solutions for the superconductor case In the whole temperature range 

are reported In reference 6. 
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